
University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 1

Lecture 22
Introduction to Memory Hierarchies

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Let!s go back to a course goal...

• At the end of the semester, you should be able to...

– ...describe the fundamental components required in a

single core of a modern microprocessor

• (Also, explain how they interact with each other, with main
memory, and with external storage media...)

2

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Question?
• How much of a chip is “memory”?

– 10%

– 25%

– 50%

– 75%

– 85%

3

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Let!s go back to a course goal...
• At the end of the semester, you should be able to...

– ...describe the fundamental components required in a

single core of a modern microprocessor

• (Also, explain how they interact with each other, with main
memory, and with external storage media...)

4

Example

How do

on-chip memory,

processor logic,

main memory,

disk

interact?

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 5

Memory and Pipelining

• In our 5 stage pipe, we!ve constantly been assuming
that we can access our operand from memory in 1
clock cycle…

– We!d like this to be the case, and its is possible...but its

also complicated

– We!ll discuss how this happens in the next several

lectures

• We!ll talk about…

– Memory Technology

– Memory Hierarchy

• Caches

• Memory

• Virtual Memory

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 6

If I say “Memory” what do you think of?
• Memory Comes in Many Flavors

– SRAM (Static Random Access Memory)

– DRAM (Dynamic Random Access Memory)

– ROM, Flash, etc.

– Disks, Tapes, etc.

• Difference in speed, price and “size”

– Fast is small and/or expensive

– Large is slow and/or expensive

– The search is on for a “universal memory”

– What!s a “universal memory”

• Fast and non-volatile.

– May be MRAM, PCRAM, etc. etc.

Let!s start with

DRAM.

Its generally the

largest piece of

RAM.

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 7

Is there a problem with DRAM?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10yrs)1

10

10
0

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
grows 50% / year

P
e

rf
o

rm
a

n
c

e

Time

“Moore!s Law”

Processor-DRAM Memory Gap (latency)

Why is
this a

problem?

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

More on DRAM
• DRAM takes about 100 ns...

• What if clock rate for our 5 stage pipeline was 1 GHZ?

– Would the memory and fetch stages stall for 100 cycles?

• Actually, yes ... if only DRAM

• Caches come to the rescue

– As transistors have gotten smaller, its allowed us to put

more (faster) memory closer to the processing logic

• The idea is to “mask” the latency of having to go off to main
memory

8

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 9

The principle of locality…
• …says that most programs don!t access all code or

data uniformly

– i.e. in a loop, small subset of instructions might be
executed over and over again…

– …& a block of memory addresses might be accessed
sequentially…

• This has lead to “memory hierarchies”

• Some important things to note:

– Fast memory is expensive

– Levels of memory usually smaller/faster than previous

– Levels of memory usually “subset” one another

• All the stuff in a higher level is in some level below it

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 10

The Full Memory Hierarchy

“always reuse a good idea”

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit

-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10

-8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Our current
focus

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Let!s talk about caches more on the

chalkboard

11

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Accessing data in different levels of

memory hierarchy:
A performance perspective

12

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 13

Terminology Summary
• Hit: data appears in block in upper level (i.e. block X in cache)

– Hit Rate: fraction of memory access found in upper level

– Hit Time: time to access upper level which consists of

• RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the lower level (i.e. block

Y in memory)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Extra time to replace a block in the upper level +

• Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264)

Lower Level

MemoryUpper Level

Memory
To Processor

From

Processor

Blk X

Blk Y

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 14

Average Memory Access Time

• Hit time: basic time of every access.

• Hit rate (h): fraction of access that hit

• Miss penalty: extra time to fetch a block from lower

level, including time to replace in CPU

AMAT = HitTime + (1 - h) x MissPenalty

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Caches:
Memory between registers and DRAM

15

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 16

A brief description of a cache

• Cache = next level of memory hierarchy up from register file

– All values in register file should be in cache

• Cache entries usually referred to as “blocks”

– Block is minimum amount of information that can be in cache

• If we!re looking for item in a cache and find it, have a cache hit; it not a

cache miss

• Cache miss rate = fraction of accesses not in the cache

• Miss penalty is # of clock cycles required b/c of the miss

Mem. stall cycles = Inst. count x Mem. ref./inst. x Miss rate x Miss penalty

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 17

Cache Basics
• Fast (but small) memory close to processor

• When data referenced

– If in cache, use cache instead of memory

– If not in cache, bring into cache

(actually, bring entire block of data, too)

– Maybe have to kick something else out to do it!

• Important decisions

– Placement: where in the cache can a block go

– Identification: how do we find a block in cache

– Replacement: what to kick out to make room in cache

– Write policy: What do we do about writes

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 18

Cache Basics
• Cache consists of block-sized lines

– Line size typically power of two

– Typically 16 to 128 bytes in size

• Example

– Suppose block size is 128 bytes

• Lowest seven bits determine offset within block

– Read data at address A=0x7fffa3f4

– Address begins to block with base address 0x7fffa380

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 19

Some initial questions to consider

• Where can a block be placed in an upper level of
memory hierarchy (i.e. a cache)?

• How is a block found in an upper level of memory
hierarchy?

• Which cache block should be replaced on a cache miss
if entire cache is full and we want to bring in new data?

• What happens if a you want to write back to a memory
location?

– Do you just write to the cache?

– Do you write somewhere else?

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 20

Where can a block be placed in a cache?

• 3 schemes for block placement in a cache:

– Direct mapped cache:

• Block (or data to be stored) can go to only 1 place in cache

• Usually: (Block address) MOD (# of blocks in the cache)

– Fully associative cache:
• Block can be placed anywhere in cache

– Set associative cache:
• “Set” = a group of blocks in the cache

• Block mapped onto a set & then block can be placed
anywhere within that set

• Usually: (Block address) MOD (# of sets in the cache)

• If n blocks, we call it n-way set associative

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 21

Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fully Associative Direct Mapped Set Associative

Set 0Set 1Set 2Set 3

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9…..

Cache:

Memory: 12

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 22

Associativity

• If you have associativity > 1 you have to have a
replacement policy

– FIFO

– LRU

– Random

• “Full” or “Full-map” associativity means you check
every tag in parallel and a memory block can go into any
cache block

– Virtual memory is effectively fully associative

– (But don!t worry about virtual memory yet)

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 23

How is a block found in the cache?

• Cache!s have address tag on each block frame that
provides block address

– Tag of every cache block that might have entry is
examined against CPU address (in parallel! – why?)

• Each entry usually has a valid bit

– Tells us if cache data is useful/not garbage

– If bit is not set, there can!t be a match…

• How does address provided to CPU relate to entry in
cache?

– Entry divided between block address & block offset…

– …and further divided between tag field & index field

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 24

How is a block found in the cache?

• Block offset field selects data from block

– (i.e. address of desired data within block)

• Index field selects a specific set

• Tag field is compared against it for a hit

• Could we compare on more of address than the tag?

– Not necessary; checking index is redundant

• Used to select set to be checked

• Ex.: Address stored in set 0 must have 0 in index field

– Offset not necessary in comparison –entire block is
present or not and all block offsets must match

Block Address

Tag Index

Block
Offset

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 25

Which block should be replaced on a

cache miss?
• If we look something up in cache and entry not there,

generally want to get data from memory and put it in
cache

– B/c principle of locality says we!ll probably use it again

• Direct mapped caches have 1 choice of what block to
replace

• Fully associative or set associative offer more choices

• Usually 2 strategies:

– Random – pick any possible block and replace it

– LRU – stands for “Least Recently Used”

• Why not throw out the block not used for the longest time

• Usually approximated, not much better than random – i.e.
5.18% vs. 5.69% for 16KB 2-way set associative

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies

Caches:
Replacement Policies

26

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 27

What happens on a write?

• FYI most accesses to a cache are reads:

– Used to fetch instructions (reads)

– Most instructions don!t write to memory

• For MIPS only about 7% of memory traffic involve writes

• Translates to about 25% of cache data traffic

• Make common case fast! Optimize cache for reads!

– Actually pretty easy to do…

– Can read block while comparing/reading tag

– Block read begins as soon as address available

– If a hit, address just passed right on to CPU

• Writes take longer. Any idea why?

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 28

What happens on a write?

• Generically, there are 2 kinds of write policies:

– Write through (or store through)

• With write through, information written to block in cache and to
block in lower-level memory

– Write back (or copy back)

• With write back, information written only to cache. It will be
written back to lower-level memory when cache block is
replaced

• The dirty bit:

– Each cache entry usually has a bit that specifies if a write
has occurred in that block or not…

– Helps reduce frequency of writes to lower-level memory
upon block replacement

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 29

What happens on a write?

• Write back versus write through:

– Write back advantageous because:

• Writes occur at the speed of cache and don!t incur delay of
lower-level memory

• Multiple writes to cache block result in only 1 lower-level
memory access

– Write through advantageous because:

• Lower-levels of memory have most recent copy of data

• If CPU has to wait for a write, we have write stall

– 1 way around this is a write buffer

– Ideally, CPU shouldn!t have to stall during a write

– Instead, data written to buffer which sends it to lower-
levels of memory hierarchy

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 30

What happens on a write?

• What if we want to write and block we want to write to
isn!t in cache?

• There are 2 common policies:

– Write allocate: (or fetch on write)

• The block is loaded on a write miss

• The idea behind this is that subsequent writes will be captured
by the cache (ideal for a write back cache)

– No-write allocate: (or write around)

• Block modified in lower-level and not loaded into cache

• Usually used for write-through caches

– (subsequent writes still have to go to memory)

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 31

Memory access equations

• Using what we defined on previous slide, we can say:

– Memory stall clock cycles =

• Reads x Read miss rate x Read miss penalty +

" Writes x Write miss rate x Write miss penalty

• Often, reads and writes are combined/averaged:

– Memory stall cycles =

• Memory access x Miss rate x Miss penalty (approximation)

• Also possible to factor in instruction count to get a
“complete” formula:

University of Notre Dame

CSE 30321 - Lecture 22 - Introduction to Memory Hierarchies 32

Reducing cache misses

• Obviously, we want data accesses to result in cache
hits, not misses –this will optimize performance

• Start by looking at ways to increase % of hits….

• …but first look at 3 kinds of misses!

– Compulsory misses:

• Very 1st access to cache block will not be a hit –the data!s not
there yet!

– Capacity misses:
• Cache is only so big. Won!t be able to store every block

accessed in a program – must swap out!

– Conflict misses:

• Result from set-associative or direct mapped caches

• Blocks discarded/retrieved if too many map to a location

